

Pergamon Tetrahedron Letters 42 (2001) 6731–6735

TETRAHEDRON LETTERS

Three novel and one new lignan, chamaecypanones A, B, obtulignolide and isootobanone from the heartwood of *Chamaecyparis obtusa* **var.** *formosana*

Yueh-Hsiung Kuo,* Chia-Hsien Chen and Yi-Ming Chiang

Department of Chemistry, *National Taiwan University*, *Taipei*, *Taiwan*, *ROC* Received 3 November 2000; revised 4 July 2001; accepted 12 July 2001

Abstract—Three novel lignans, chamaecypanone A **1**, chamaecypanone B **2**, obtulignolide **4**, and one new lignan, isootobanone **3**, were isolated from the heartwood of *Chamaecyparis obtusa* var. *formosana*, and were elucidated on the basis of 2D NMR techniques. Compounds **1** and **2**, derived from a phenyltetrahydronaphthalene-type lignan by cleavage and cyclization, are anthrone derivatives. Compound **3** is a phenyltetrahydronaphthalene-type lignan, and **4** is a 3,4-secophenyltetrahydronaphthalenetype lignan. The absolute configurations of **3** and otobanone **5** were elucidated by a modified Mosher's method. © 2001 Elsevier Science Ltd. All rights reserved.

Chamaecyparis obtusa var. *formosana* (Taiwan hinoki; Cupressaceae) is an economically important tree species indigenous to Taiwan. Previous chemical studies of the composition of its wood reported only essential oil and acidic components.¹ We have isolated two carbamates from its bark² and one novel diterpene, obtunone, $3a$ together with three new abietane-type diterpenes^{3b} from its heartwood. Further detailed reinvestigation of the same extract from the heartwood has yielded two novel anthrone derivatives, chamaecypanones A **1** and B **2**, a new lignan, isootobanone **3**, and a novel lignan, obtulignolide **4** together with otobanone **5**. ⁴ The structural elucidation and proposed biosynthetic pathway of these compounds are reported here.

Chamaecypanone A **1**⁵ had the molecular formula $C_{20}H_{16}O_6$ on the basis of mass spectroscopy (HRMS). It showed aromatic (3080, 1622, 1600, and 1499 cm−¹), isolated carbonyl (1721 cm−¹), and conjugated carbonyl (1664 cm−¹) absorptions in its IR spectrum. The UV spectrum indicated a benzoyl group (λ_{max} 250, 301, and 345 nm), and the ¹ H NMR spectrum revealed two *ortho* aromatic protons [δ 7.88 and 6.92 (both d, $J=8.3$ Hz)], two *para* aromatic protons $[\delta$ 7.68 and 6.68 (both s)], and two methylenedioxyl groups attached to different aromatic groups [δ _H 6.02 (2H, s), δ _C 101.8; δ _H 6.08 and

* Corresponding author.

6.16 (both s), δ_c 102.3]. Twelve low field signals between $\delta_{\rm C}$ 105 and 155 (Table 1) and a very low field signal at δ_c 181.8 indicated that **1** contained two aromatic rings and one conjugated carbonyl group. Four downfield ¹³C NMR signals at δ 151.5, 147.7, 150.9, and 143.4 were assigned as two pairs of vicinal oxygenated phenyl carbons bonded to two methylenedioxyl groups. Two lower field proton signals at δ 7.88 (H-8) and 7.68 (H-1) suggested that they were located *ortho* to the carbonyl group due to deshielding from this functionality. Meanwhile, H-1 and H-8 showed HMBC correlation with the carbonyl group at δ_c 181.8 which revealed the presence of a benzophenone moiety. The remaining four aromatic ¹³C NMR signals at δ 136.5 (C-4a), 128.7 (C-9a), 127.4 (C-8a) and 125.8 (C-10a) were all quaternary carbons. A methine proton at δ 5.02 (1H, d, $J=2.2$ Hz, H-10; δ_c 37.7) exhibited a NOESY correlation with δ 6.68 (H-4; δ_c 107.8), demonstrating that the signal at δ 5.02 was a benzylic proton. The HMBC correlation was displayed as follows: 7.88/127.4, 181.8; 7.68/128.7, 181.8; 5.02/136.5, 107.8, 125.8, and 143.4. This suggested that it is an anthrone derivative. A C_4 unit was discerned from four other ¹³C NMR signals at δ _C 28.7 (CH₃), 209.8 (C), 52.9 (CH), and 10.1 (CH₃). Thus, in conjunction with H NMR signals at δ 2.29 (3H, s), 3.02 (1H, qd, *J*=7.2, 2.2 Hz), and 0.58 (3H, d, $J=7.2$ Hz), proved the C₄ alkyl group was 2-oxobut-3-yl. On irradiation at δ 3.02, the signals at δ 5.02 and 0.58 both collapsed to give a singlet. Based on the above evidence and HMBC correlation, **1** could be assigned as 2,3,5,6-dimethylenedioxy-

Keywords: anthrone; 3,4-secophenyltetrahydronaphthalene-type lignan; phenyltetrahydronaphthalene-type lignan; *Chamaecyparis obtusa* var. *formosana*; Mosher ester.

10-(2-oxobut-3-yl)anthrone. H-10, seen at lower field (δ 5.02), indicated that the benzylic proton must be in a quasi-equatorial orientation, being deshielded by the oxygen atom of the methylenedioxyl group. H_3-4' appeared at high field $(\delta \ 0.58)$ due to its quasi-axial orientation and being shielded by a aromatic group.6

The MS of **2**⁵ gave an identical exact mass to **1** indicating the molecular formula $C_{20}H_{16}O_6$. The IR absorption (1715 and 1670 cm[−]¹) and UV absorption bands $(\lambda_{\text{max}}$ 239, 293 and 331 nm) of 2 were similar to 1 indicating that 2 was an isomer of 1 . The ¹H and ¹³C NMR (Table 1) spectra showed that **2** contained two methylenedioxyl groups bonded to both aromatic groups $[\delta_{\rm H}$ 6.19, 6.17, 6.12 and 6.09 (each 1H, s); $\delta_{\rm c}$ 102.6 and 102.4], two pairs of *ortho* aromatic protons δ 7.86, 6.91 (both 1H, d, *J*=8.3 Hz), 6.90, 6.67 (both 1H, d, *J*=8.3 Hz)]. Two aromatic rings, one conjugated carbonyl group (δ 182.2) and C-10 (δ 38.0) revealed an anthrone derivative from its 13C NMR spectrum. The signals at δ 2.25 (3H, s; $\delta_{\rm C}$ 28.9), $\delta_{\rm C}$ 209.7, δ 2.95 (1H, qd, $J=7.1$, 2.8 Hz; $\delta_{\rm C}$ 53.6), and δ 0.63 (3H, d, $J=7.1$ Hz; δ _C 10.4) coincided with the presence of a 2-oxobut-3-yl moiety. The low field benzylic proton H-10 at δ 4.97 (1H, d, *J*=2.8 Hz) displayed strong deshielding from the methylenedioxyl group and had a NOESY correlation with H-4 (δ 6.67). Along with the high field methyl group (δ 0.63) in the C₄ unit, the H-10 and C₄ units can be assigned as having a quasi-equatorial and quasi-axial orientation, respectively. After comparison of spectral data between **2** and **1** and addition of HMBC, NOESY and decoupling techniques, the structure of chamaecypanone B **2** was elucidated as 1,2,5,6 dimethylenedioxy-10-(2-oxobut-3-yl)anthrone. Therefore, compounds **1** and **2** are constitutional isomers.

Isootobanone **3** suggested the presence of the benzoyl moiety in its UV absorption (λ_{max} 235, 285, and 312 nm) and IR absorption bands (3070, 1686, 1626, 1588 and 1505 cm−¹). The ¹ H NMR spectrum indicated the

presence of two secondary methyl groups $[\delta \ 1.08 \ (d,$ *J*=6.9 Hz), 1.02 (d, *J*=7.1 Hz)], two methylenedioxyphenyl groups $[\delta 5.93, 5.92$ (both 2H, s), 7.73, 6.83 (both 1H, d, *J*=8.4 Hz), 6.70 (1H, d, *J*=8.0 Hz), 6.57 (1H, d, *J*=1.7 Hz), and 6.48 (1H, dd, *J*=8.0, 1.7 Hz)]. Isootobanone **3** had the molecular formula $C_{20}H_{18}O_5$ based on its HRMS and exhibited similar ¹H and 13C NMR (Table 1) spectral signals as otobanone **5** (isolated from the same source). The difference between **3** and **5** was only in the relative configuration of the methyl group. The signal of H-7 in **5**⁴ showed a large coupling constant at δ 3.72 (d, *J*=9.2 Hz). The chemical shift of methylenedioxy protons attached on ring A were markedly different $[\delta$ 5.66 and 5.74 (d, $J=1.2$ Hz)] and higher field than on ring C [δ 5.90 (2H, s)]. The evidence demonstrated that the aryl group of **5** was in a quasi-equatorial orientation, and exhibited a shielding effect to the methylene protons in ring A. In **3**, H-7 exhibited at low field shift (δ 4.14) with a small coupling constant $(J=2.4 \text{ Hz})$, which indicated that H-7 was in a quasi-equatorial orientation, being deshielded by the methylenedioxyl group on the ring A. The relative configuration of **3** was determined by a NOESY technique (see structure **6**). The absolute configuration of **5** and **3** were determined by the modified Mosher's method⁷ as follows. Sodium borohydride (NaBH4) reduction of **5** gave two products **7a** and **8** (7:1 ratio). Based on the ¹H NMR data analysis,⁵ H-7 (d, $J=9.6$ Hz), H-8, H-7' (d, $J=8.8$ Hz), and H-8' are all in the axial orientation in **7a**, and **8** [H-7 (d, $J=9.6$ Hz) and H-7 (br s)] is a C-7 epimer of **7a**. The reduction of 3 with NaBH₄ yielded only one product **9a**, the hydride attacked from the less hindered α -face to produce the axial hydroxyl group. Due to a 1,3-diaxial interaction between C-7' OH and C-8 $CH₃$, the conformation of the aryl group was quasi-equatorial in **9a** (Fig. 1). The relative configuration was confirmed by H NMR data [δ 4.87 (d, *J*=5.2 Hz, H-7'), 3.62 (d, $J=8.4$ Hz, H-7), 5.66 and 5.73 (both 1H, s, -OCH₂O-

Figure 1. Conformational interconversion of **9a**.

of ring A)]. Treatment of **7a** with (*R*)- and (*S*)-2 methoxy-2-trifluoromethyl-2-phenylacetyl chloride (MTPACl) afforded the (*R*)- and (*S*)-MTPA esters (**7b** and 7c, respectively). $\Delta\delta$ values ($\delta_S - \delta_R$) of H-6' (+80.0) and $H-5'$ ($+41.2$) showed positive values, while those of H-8' (-3.4), H₃-9' (-32.6), H-8 (-8.2), and H₃-9 (-15.2) were negative (Fig. 2), thus indicating a 7*S*-configuration. Therefore, the absolute configurations at C-8', C-8, and C-7 of **7a** were assigned as *R*, *S*, and *R*, respectively. Thus, the absolute configurations at C-8', C-8, and C-7 of **5** were the same as those of **7a**. Compound **9a** was converted to (*S*)-MTPA (**9b**) and (*R*)-MTPA (**9c**) as mentioned above. Using the modified Mosher's method, α the absolute configuration at C-8, C-8, and C-7 of **9a** (see Fig. 3) were assigned as *S*, *S*, and *R*, respectively. Therefore, the absolute configuration of **3** was determined. The different conformation of the aryl substituted group in **3** and **9a** was revealed from the coupling constant of H-7 $(J=2.4 \text{ Hz})$ in **3**; *J*=8.4 Hz in **9a**). Based on the above evidence, **3** is a C-8 epimer of **5**.

Obtulignolide **4** was given the molecular formula $C_{20}H_{16}O_6$, and its IR spectrum shows the presence of an

Figure 2. $\Delta\delta$ values $[\Delta\delta$ (in Hz) = δ_S – δ_R] obtained for the (*S*)and (*R*)-MTPA esters (**7b** and **7c**, respectively).

Figure 3. $\Delta\delta$ values $[\Delta\delta$ (in Hz) = δ_S – δ_R] obtained for the (*S*)and (*R*)-MTPA esters (**9b** and **9c**, respectively).

Scheme 1. Proposed biotransformations leading to **2** and **4**.

ester, a terminal double bond, and aromatic groups (3024, 1735, 1670, 1607, and 1593 cm⁻¹). The ¹H NMR spectrum showed the following: δ 1.27 (3H, d, J=6.9) Hz), 3.34 (1H, qd, *J*=6.9, 4.6 Hz, H-8), 4.18 (1H, d, *J*=4.6 Hz, H-7), 4.62 and 4.79 (both 1H, s, H-9), 6.75, 7.39 (both 1H, d, *J*=8.1 Hz, H-5, -6), 6.64 (1H, dd, *J*=8.1, 1.5 Hz, H-6), 6.67 (1H, d, *J*=1.5 Hz, H-2), and 6.68 (1H, d, $J=8.1$ Hz, H-5). The ¹H NMR signals [δ 5.89 (2H, s), 5.95, and 5.97 (both 1H, s)] and ¹³C NMR signals (Table 1) (δ_c 101.0 and 101.7) indicated that the two methylenedioxyl groups were bonded to different aromatic groups. Removal of $C_2H_4O_4$ (two methylenedioxyl units) from the formula $C_{20}H_{16}O_6$ would afford a phenyltetrahydronaphthalene-type lignan with one lactone, one terminal methylene, and one secondary methyl group. The carbonyl terminal of the lactone was conjugated with the aryl group; this was discerned from the UV absorptions (λ_{max} 291 and 226 nm) and NMR data (δ _C 167.6 and low field aromatic proton δ _H 7.39). The ${}^{13}C$ NMR signals of the terminal double bond appeared at δ_c 101.8 and 159.5, this indicated the *O*-terminal of lactone was bonded to the double bond. The low field shift of H-7 (δ 4.18) and methylenedioxyl protons of the A ring at δ 5.95 and δ 5.97 gave the conclusion that H-7 and the aryl groups attached to C-7 were in a quasi-equatorial and quasi-axial orientation, respectively. HMBC analysis confirmed the assigned structure. The relative configuration was elucidated by a NOESY technique (structure **10**), and was ascribed to a 3',4'-secophenyltetrahydronaphthalenetype lignan, a novel skeleton.

Compounds **2** and **4** are supposed to derive from otobain **11**. The proposed biosynthesis of these compounds is shown in Scheme 1. Oxidation of **11** yields otobanone **5** and then further oxidation gives ketoacid **12**. After enolization and lactonization of **12**, obtulignolide **4** was produced. By another biooxidative pathway, the biotransformation product of **11** was proposed to be **13** which was dehydrated and then subsequently oxidized to yield diketone **14**. **14** produced chamaecypanone B **2** via cyclization. Chamaecypanone A **1** was proposed to derive from cagayanin **15**⁴ (cagayanone **16**⁴ was also isolated from the same source) by a similar biosynthetic pathway to that shown in Scheme 1.

Acknowledgements

This research was supported by the National Science Council of the Republic of China

References

- 1. (a) Kafuku, K.; Hata, C. *Bull*. *Chem*. *Soc*. *Jpn*. **1931**, 6, 40; (b) Nozoe, T. *Bull*. *Chem*. *Soc*. *Jpn*. **1936**, 11, 295; (c) Lin, Y. T.; Wang, K. T.; Chang, L. H. *J*. *Chin*. *Chem*. *Soc*. **1955**, ², 126; (d) Lin, Y. T.; Wang, K. T.; Chang, L. H. *J*. *Chin*. *Chem*. *Soc*. **1963**, 10, 139.
- 2. Kuo, Y. H.; Jou, M. H. *Chem*. *Express* **1990**, ⁵, 905.
- 3. (a) Kuo, Y. H.; Chen, C. H.; Huang, S. L. *Chem*. *Pharm*. *Bull*. **1998**, 46, 181; (b) Kuo, Y. H.; Chen, C. H.; Huang, S. L. *J*. *Nat*. *Prod*. **1998**, 61, 829.
- 4. Kuo, Y. H.; Lin, S. T.; Wu, R. E. *Chem*. *Pharm*. *Bull*. **1989**, 37, 2310.
- 5. Compound 1: mp 155–156°C; $[\alpha]_D^{25}$ +7.5 (*c* 0.17, CHCl₃); HR-EIMS m/z 352.0951 (calcd for C₂₀H₁₆O₆: 352.0947); IR (KBr) cm−¹ : 3080, 1721, 1664, 1622, 1600, 1499, 1477; UV (MeOH) λ_{max} nm (log ε): 250 (4.41), 301 (3.86), 345 (4.10). Compound 2: mp 158-159°C; $[\alpha]_D^{25}$ -37.7 (*c* 0.21, CHCl₃); HR-EIMS m/z 352.0946 (calcd for C₂₀H₁₆O₆: 352.0947); IR (KBr) cm−¹ : 3085, 1715, 1670, 1627, 1594, 1506; UV (MeOH) λ_{max} nm (log ε): 239 (4.16), 293 (3.79), 331 (3.82). Compound 3: Amorphous; $[\alpha]_D^{26}$ –55.9 (*c* 0.72, CHCl₃); HR-EIMS m/z 338.1147 (calcd for C₂₀H₁₈O₅: 338.1154); UV (MeOH) λ_{max} nm (log ε): 235 (4.19), 285 (3.85), 312 (3.67); CD (MeOH): $[\theta]_{224}$ -163996, $[\theta]_{255}$ $-16831,$ [θ]₃₀₀ −56478, [θ]₃₃₄ −315950; ¹H NMR (500

MHz, CDCl₃): δ 2.31, 2.81 (each 1H, m, H-8, -8'). Compound 4: Amorphous; $[\alpha]_D^{25}$ –2.8 (*c* 0.25, CHCl₃); HR-EIMS m/z 352.0944 (calcd for C₂₀H₁₆O₆: 352.0947); UV (MeOH) λ_{max} nm (log ε): 226 (3.91), 291 (3.57); CD (MeOH): $[\theta]_{248}$ +91520, $[\theta]_{270}$ +399142, $[\theta]_{300}$ -192359. Compound 5: $[\alpha]_D^{20}$ –27.1 (*c* 0.70, CHCl₃); CD (MeOH): $[\theta]_{256}$ +9050, $[\theta]_{273}$ +15870, $[\theta]_{295}$ -8680, $[\theta]_{300}$ -7450, $[\theta]_{330}$ +1570. Compound 7a: a colorless solid; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3): \delta 0.96 \text{ (3H, d, } J=6.4 \text{ Hz}, \text{ H}_3\text{-9}), 1.16$ $(3H, d, J=6.4 \text{ Hz}, H₃-9)$, 1.41 (1H, m, H-8), 1.52 (1H, m, H-8), 3.48 (1H, d, *J*=9.6, H-7), 4.35 (1H, d, *J*=8.8 Hz, H-7'), 5.60, 5.69 (both 1H, d, $J=1.2$ Hz, -OCH₂O-), 5.90 (2H, s, -OCH2O-), 6.51 (1H, d, *J*=2.0 Hz, H-2), 6.59 (1H, dd, *J*=8.0, 2.0 Hz, H-6), 6.68 (1H, d, *J*=8.0 Hz, H-5), 6.72 (1H, d, *J*=8.0 Hz, H-5), 7.14 (1H, d, *J*=8.0 Hz, H-6). Compound **7b**: a colorless oil; EI-MS (70 eV) *m*/*z* (rel. int.%): 556 (M⁺, 1), 322 (100), 277 (40); ¹H NMR (400 MHz, CDCl₃): δ 0.89 (3H, d, J=6.4 Hz, H₃-9'), 0.91 (3H, d, $J=6.4$ Hz, H₃-9), 1.61 (1H, m, H-8), 1.77 (1H, m, H-8'), 3.49 (1H, d, *J*=10.0 Hz, H-7), 3.56 (3H, br s, OMe), 5.60, 5.68 (both 1H, d, $J=1.2$ Hz, $-OCH_2O$ -), 5.90 (2H, s, -OCH2O-), 6.03 (1H, d, *J*=9.6 Hz, H-7), 6.49 (1H, d, *J*=8.0 Hz, H-6), 6.50 (1H, d, *J*=2.0 Hz, H-2), 6.55 (1H, dd, *J*=8.0, 2.0 Hz, H-6), 6.59 (1H, d, *J*=8.0 Hz, H-5), 6.68 (1H, d, *J*=8.0 Hz, H-5), 7.42 (3H, m), 7.62 (2H, m). Compound **7c**: a colorless oil; EI-MS (70 eV) *m*/*z* (rel. int.%): 556 (M⁺, 1), 322 (100), 277 (37); ¹H NMR (400 MHz, CDCl₃) δ 0.95 (3H, d, *J* = 6.4 Hz, H₃-9), 0.97 (3H, d, $J=7.6$ Hz, H_3-9'), 1.63 (1H, m, H-8), 1.78 (1H, m, H-8), 3.48 (1H, d, *J*=9.6, H-7), 3.59 (3H, br s, OMe), 5.59, 5.65 (both 1H, d, $J=1.2$ Hz, $-CCH₂O₋$), 5.90 (2H, s, -OCH2O-), 6.04 (1H, d, *J*=9.6 Hz, H-7), 6.29 (1H, d, *J*=8.0 Hz, H-6), 6.48 (1H, d, *J*=8.0 Hz, H-5), 6.50 (1H, d, *J*=2.0 Hz, H-2), 6.55 (1H, dd, *J*=8.0, 2.0 Hz, H-6), 6.68 (1H, d, *J*=8.0 Hz, H-5), 7.43 (3H, m), 7.64 (2H, m). Compound 8: ¹H NMR (400 MHz, CDCl₃) δ 0.95 (3H, d, *J*=6.8 Hz, H₃-9), 1.14 (3H, d, *J*=6.8 Hz, H₃-9'), 1.98 (1H, m, H-8), 1.61 (1H, m, H-8), 3.38 (1H, d, *J*=9.6 Hz, H-7),

4.53 (1H, br s, H-7), 5.63, 5.71 (both 1H, d, *J*=1.2 Hz, $-OCH_2O$ -), 5.89 (2H, br s, $-OCH_2O$ -), 6.66 (1H, dd, $J=$ 8.0, 2.0, H-6), 6.67 (1H, d, *J*=8.0 Hz, H-5), 6.68 (1H, d, *J*=2.0 Hz, H-2), 6.68 (1H, d, *J*=8.0 Hz, H-5), 6.78 (1H, d, *J*=8.0 Hz, H-6'). Compound **9a**: mp 172–175°C; $[\alpha]_D^{26}$ −35.1 (*c* 0.30, CHCl3); EI-MS (70 eV) *m*/*z* (rel. int.%): 340 (M⁺, 20), 322 (46), 277 (16), 61 (100); ¹H NMR (400 MHz, CDCl₃): δ 0.85 (3H, d, J=7.2 Hz, H₃-9'), 1.01 (3H, d, *J*=7.2 Hz, H₃-9), 1.94 (1H, m, H-8), 2.11 (1H, m, H-8'), 3.62 (1H, d, *J*=8.4 Hz, H-7), 4.87 (1H, d, *J*=5.2 Hz, H-7'), 5.66, 5.73 (both 1H, d, $J=1.2$ Hz, -OCH₂O-), 5.89 (2H, s, -OCH₂O-), 6.48 (1H, br s, H-2), 6.51 (1H, br d, *J*=8.0 Hz, H-6), 6.67 (1H, d, *J*=8.0 Hz, H-5), 6.75 (1H, d, *J*=8.0 Hz, H-5), 7.08 (1H, d, *J*=8.0 Hz, H-6). Compound **9b**: a colorless oil; EI-MS (70 eV) m/z (rel. int.%): 556 (M⁺ , 16), 322 (100), 277 (26); ¹ H NMR (400 MHz, CDCl₃): δ 0.72 (3H, d, J=7.2 Hz, H₃-9'), 0.97 (3H, d, $J=6.8$ Hz, H₃-9), 1.91 (1H, m, H-8), 2.27 (1H, m, H-8'), 3.52 (3H, br s, OMe), 3.88 (1H, d, *J*=4.4, H-7), 5.78, 5.81 (both 1H, d, $J=1.2$ Hz, -OCH₂O-), 5.89 (2H, s, -OCH₂O-), 6.31 (1H, d, *J*=4.4 Hz, H-7), 6.38 (1H, dd, *J*=8.0, 1.6 Hz, H-6), 6.43 (1H, d, *J*=1.6 Hz, H-2), 6.66 (1H, d, *J*=8.0 Hz, H-5), 6.71 (1H, d, *J*=8.0 Hz, H-5), 6.86 (1H, d, *J*=8.0 Hz, H-6), 7.35 (3H, m), 7.51 (2H, m). Compound **9c**: a colorless oil; EI-MS (70 eV) *m*/*z* (rel. int.%): 556 (M⁺ , 60), 322 (100), 277 (14); ¹H NMR (400 MHz, CDCl₃): δ 0.83 (3H, d, $J=7.2$ Hz, H₃-9'), 0.96 (3H, d, $J=7.2$ Hz, H3-9), 1.96 (1H, m, H-8), 2.31 (1H, m, H-8), 3.52 (3H, br s, OMe), 3.75 (1H, d, *J*=6.4, H-7), 5.71, 5.75 (both 1H, d, *J*=1.2 Hz, -OCH₂O-), 5.90 (2H, s, -OCH₂O-), 6.31 (1H, d, *J*=4.4 Hz, H-7), 6.43 (1H, dd, *J*=8.0, 2.0 Hz, H-6), 6.44 (1H, d, *J*=1.6 Hz, H-2), 6.66 (1H, d, *J*=8.0 Hz, H-5), 6.62 (1H, d, *J*=8.0 Hz, H-5), 6.64 (1H, d, *J*=8.0 Hz, H-6), 7.38 (3H, m), 7.55 (2H, m).

- 6. Kuo, Y. H.; Lin, S. T. *Chem*. *Pharm*. *Bull*. **1993**, 41, 1507.
- 7. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. *J*. *Am*. *Chem*. *Soc*. **1991**, 113, 4092.